你想找的好書在這裡!
累計出版品總數量:113,417
:::
基礎太空電漿物理學

基礎太空電漿物理學

  • 統一編號GPN:1009904729
  • 出版日期:2010/12
  • 作/編/譯者:呂凌霄
  • 語言:英文
  • 頁數:500
  • 裝訂:平裝
  • ISBN/ISSN:9789868270954
  • 出版單位:國立中央大學
  • 開數:A4
  • 版次:初版
  • 價格:定價$450

書籍介紹

隨著太空電漿物理現象的不同,其所涵蓋的特徵尺度範圍可小至電子的慣性尺度,也可大至磁流體力學(MHD)的尺度。雖然利用磁流體電漿模型,已經可用來描述許多的太空物理現象,但是就像大氣物理中的地轉風模式一樣,我們應該要謹慎考慮它們的適用範圍。本書的重點之一,就是要教導學生,科學家是如何得到那些特定電漿模型的控制方程式,並讓讀者了解,要獲得這套控制方程式,需要做哪些基本的假設。我們相信,除非學生能徹底了解各種電漿模式的控制方程式以及它們的線性色散關係是如何推導出來的,否則是很難真正了解不同電漿模型的適用條件,也自然很難對症下藥,選用正確的電漿模式,來解釋分析觀測到的物理現象。
本書一開始先介紹電漿微觀動力模式、電子-正離子雙流體模式、與單流體電漿模式的基本方程式。接著介紹電子-正離子雙流體電漿與磁流體電漿中的線性波色散關係式。並於本書後段介紹電漿微觀動力模式中的線性波色散關係式。因為認識帶電粒子在相空間中的運動軌跡,將有助於了解電漿微觀動力模式中,波與粒子的交互作用,因此在介紹電漿微觀動力模式的線性波色散關係前,本書將先介紹如何分析帶電粒子在不同電磁場環境中,所可能出現的多重時間尺度的運動情形。
本書是針對兩學期研究所課程所設計的教科書。內容只涵蓋電漿物理的基本課題,因此授課老師可在一學年的時間裡,輕鬆的教完本書全部的課程。本書中第二、三章所推導的各種基本方程式,可為太空觀測資料的分析工作以及不同尺度電漿模擬碼的設計工作,提供非常實用的理論基礎。包括了太空物理、天文物理、與實驗室電漿物理等領域的學生與研究人員將發現本書的內容實用,且對相關研究工作有所幫助。
本書封面圖片為沿著日地連線方向所作的磁鞘觀測結果。這項觀測結果顯示
,或 式(3.62),是一個比著名的CGL雙絕熱狀態方程式,還更具普遍性的絕熱方程式。(感謝趙寄昆教授提供這份珍貴的太空觀測資料分析結果。)

目次

Table of Contents vii
Chapter 1 Introduction 1
1.1. Definition of Plasma 2
1.2. The SI Units and The Gaussian Units 2
1.3. Temperature in Units of ºK and eV 8
1.4. Boltzmann Relation 10
1.5. Debye Shielding and Debye Length 11
1.5.1. Debye Shielding in the Electron Time Scale 11
1.5.2. Debye Shielding in the Ion Time Scale 12
1.6. Plasma Parameter 13
1.7. Plasma Frequency 14
1.8. Gyro Frequency and Gyro Radius (or Larmor Radius) 15
1.9. Collisions 16
Chapter 2 Deriving the Vlasov Equation From the Klimontovich
Equation
19
2.1. Klimontovich Equation 19
2.2. Vlasov Equation 22
Chapter 3 Deriving the Fluid Equations From the Vlasov Equation 25
3.1. The Vlasov-Maxwell System 25
3.2. The Fluid Variables 27
3.3. The Fluid Equations 31
3.3.1. The Fluid Equations of the
α th Species 31
3.3.2. The Two-Fluid Equations in the Convective-Time-Derivative
Form
32
3.3.3. The One-Fluid Equations in the Conservative Form for Studying
Nonlinear Wave in the MHD Plasma
35
3.3.3.1. The One-Fluid Variables 35
3.3.3.2. The One-Fluid Equations 36
3.3.4. The One-Fluid Equations in the Convective-Time-Derivative 41
Table of Contents
viii
Form
Chapter 4 Deriving the Vlasov Equation From the Liouville Equation 47
4.1. Liouville Equation 47
4.2. BBGKY Hierarchy 48
Chapter 5 Linear Waves in the Electron-Ion Two-Fluid Plasma 51
5.1. How to Linearize the Nonlinear Plasma Equations 52
5.2. Linear Plane Waves in Uniform Two-Fluid Plasma 54
5.3. Dispersion Relations of High-Frequency Waves in a Uniform
Two-Fluid Plasma
58
5.3.1. High-Frequency Waves in Unmagnetized Plasma 65
5.3.2. High-Frequency Waves in Magnetized Plasma With k Parallel
to
B0
66
5.3.3. High-Frequency Waves in Magnetized Plasma With k
Perpendicular to
B0
69
5.4. Dispersion Relations of Cross-Ion-Electron-Time-Scale Linear
Wave Modes in Uniform Two-Fluid Plasma
77
5.4.1. Pure Electrostatic Wave Modes 77
5.4.2. Incompressible EM Waves 79
5.4.3. Compressible EM Waves 81
Chapter 6 Linear Waves in the MHD Plasma 85
6.1. Linearized Wave Equations in a Uniform Isotropic MHD Plasma 85
6.2. Linear Wave Modes in the MHD Plasma 88
6.2.1. Entropy Mode 89
6.2.2. Alfvén Mode (or Intermediate Mode) 90
6.2.3. Fast Mode and Slow Mode 91
6.2.4. Friedrichs Diagrams of the Phase Velocity and Group Velocity
of the MHD Waves
94
Chapter 7 Particle Motions With Multiple Time Scales 97
7.1. Periodic Motions and Drift Motions of a Charged Particle 97
7.1.1.
E× B Drift 98
7.1.2. Gravitational Drift 100
7.1.3. Curvature Drift 100
7.1.4. Gradient B Drift 102
Table of Contents
ix
7.2. Fluid Drift 103
7.2.1. Ions’ Diamagnetic Drift 103
7.2.2. Electrons’ Diamagnetic Drift 104
7.2.3. Diamagnetic Current Density 104
7.2.4. Magnetization Current 105
7.3. Drift Motion in Time-Dependent Fields 106
7.3.1. Polarization Drift 106
7.3.2. Ponderomotive Force 107
7.3.2.1. Ponderomotive Force in a High-Frequency Non-uniform
Longitudinal E-Field
107
7.3.2.2. Ponderomotive Force in a High-Frequency Non-uniform EM
Wave Field
108
Chapter 8 Equilibrium Solutions of the Vlasov Equation 113
8.1. Characteristic Curves of a Partial Differential Equation 113
8.2. Equilibrium Solutions of Time-Independent Vlasov-Maxwell
Equations
114
Chapter 9 Electrostatic Linear Waves in the Vlasov Plasma 117
9.1. Landau Contour 117
9.2. Linear Dispersion Relations of Electrostatic Waves 126
9.3. Landau Damping 128
9.4. Nyquist Method 129
Chapter 10 Two-Stream Instability 137
Chapter 11 Linear Waves in the Vlasov Plasma 145
11.1. Linear Waves in Field-Free Plasma (
􀀀
E0 = 0, B0 = 0) 146
11.2. Linear Waves in Magnetized Plasma With Uniform Background
B0
151

分類 其他詳細資訊
  • 英文題名:Elementary Space Plasma Physics
  • 適用對象:成人(學術性)
  • 關鍵詞:plasma physics,vlasov equation,klimontovich equation,fluid equation,drift motion
  • 附件:無附件
  • 頁/張/片數:500
授權資訊
  • 著作財產權管理機關或擁有者:呂凌霄
  • 取得授權資訊:聯絡處室:中大出版中心 姓名:徐億 電話:03-4227151*34832 地址:320中壢市中大路300號