書籍介紹
《大域微分幾何》全書共三卷。內容主要對象是彎曲的空間,上卷大體是作者多次在臺大數學研究所授課的講稿,以此為基礎,展開中、下両卷,進入大域幾何研究的專業。中卷「活動標架法」先介紹「張量的微積分」,從「平均」的視角出發,導入均曲率、Diverence與Laplacian等相關的幾何概念,刻劃結構方程的意涵。然後藉由微分式(differential form)的運算,發展「活動標架法」,有效處理彎曲空間的大域問題。
目次
中卷前言
《大域微分幾何》三卷書二版序
中卷 活動標架法
篇四 張量的微積分
第13章 平均的概念
第14章 子流形,均曲率與Laplacian
第15章 外微分與Divergence定理
篇五 Riemann幾何的結構
第16章 結構方程
第17章 張量的共變微分
第18章 活動標架法的運算基礎
篇六 活動標架法與大域幾何
第19章 高維流形的Gauss-Bonnet-Chern定理
第20章 Bochner's Technique
第21章 Laplacian的特徵值
附錄
全書參考文獻
全書索引
編/著/譯者簡介
黃武雄
學歷:美國萊斯(Rice)大學數學博士
經歷:國立臺灣大學數學系教授、中央研究院數學所研究員
相關著作:幾何專業研究論文之外,著有通俗數學讀物《初等微分幾何講稿》、《中西數學簡史》、《小樹的冬天》。
序言/導讀
大域微分幾何》三卷書二版序(摘錄)
1、
這三卷書去年初版。出乎意料的,不到一年半已幾乎售罄。去年初版成書後不久,我便發覺有幾處校對上的疏忽。另外,下卷最後一章(即ch.30)的最後一個式子,因論證大意而有漏洞。慚愧之餘,我一直期待再版時,能有機會修正。
雖然有了這些瑕疵,但出書以來,我收到一些數學家的正面回饋,則感到欣喜。例如美國Purdue大學莫宗堅教授、史丹佛Stanford大學兼中研院劉太平教授,透過信件或電話告訴我,他們閲讀時的感想。台大蔡宜洵教授更細心的讀完終卷,寫下深刻感人的書評,發表在《中華民國數學會電子報》;這份書評的紙本,亦將在中研院《數學傳播》季刊全文刊登。
另外,感謝張海潮、王藹農、王立中教授指出篇一第4章「曲面論基本定理」的證明,有個gap,並做了補正,其間細微之辨,非常有趣。我在現今這個二版的上卷書末,增添兩頁附錄,放入他們的補正。
2、
初版時,我在引言中談到1978年我出版過的小書《初等微分幾何講稿》(以下簡稱為「小書」)。這本小書適合大學部初讀者的水準。許多這一代台灣的數學家,年輕時都讀過這本小書。如今他們已步入中年,多次向我提起小書對他們大學時代的影響。
今年初,在新迪出版社友人石飛益的贊助之下,這本小書重新修訂出版。
目前《大域微分幾何》這三卷書(以下稱為「大書」),可以看成是小書的續集,初版或二版不拘。也就是說,小書是大書的先修本。
但大書上卷的前篇章A〈大域曲面論概要〉則是小書的濃縮版。數學程度成熟的專業者可以跳過小書,直接讀大書。兩書一小一大,相輔相成,從大學部的水準,一直深入微分幾何專業研究的領域。
中研院鄭日新、台大李瑩英、師大林俊吉三位教授,原本計劃要在今年8月7日,為大書舉辦「新書發表會/暨cmc曲面研討會」;同時也回顧他們年輕時走向幾何的經驗。惜因疫情起伏不定而作罷。
我在今年初的《數學傳播季刊》中,寫了一篇長文,説明大書與小書內容的連結。這篇長文也作為前言,放在重新出版的小書中。
3、
眼前這套大書的再版(即現今這二版),上、中兩卷除了修正幾處typos(校對誤差)之外,幾乎沒什麼更動。下卷亦然,真正大幅更動的是最後一章(ch30)。我把它重新改寫,因為在彌補前述的漏洞時,我們的研究工作又有新的進展。
這章主題是處理cmc曲面(hypersurface)上domain D(t)的動態變形,考慮其上Jacobi場隨著t,而離散出現的分佈情狀。
我們引入Morse index定理,來處理這問題。關鍵便落在stability operator的特徵值是否連續。我們處理的domain D(t)是困難的廣義Lipschitz domain,並且容許它們的topological type可以隨t而改變。如此D(t)才能伸向大域,使其樣態多變。
但這樣一來,問題便艱鉅得多,而且論證也變得深刻。穿越困難,像走入曲折迂迴的甬道,暗黑而多次碰壁。經過半年多艱辛的努力,我們終於看到曙光,解決了問題,得到完整的結果。
這章(ch30)的改寫,是二版修訂真正的重點。
分類
- 書籍分類 :教育學習>大學出版
- 出版品分類:圖書
- 主題分類:
教育文化
- 施政分類:
教育及體育
其他詳細資訊
- 適用對象:成人(學術性)
- 關鍵詞:數學,微分幾何,活動標架法
- 附件:其他:
- 頁/張/片數:220
授權資訊
- 著作財產權管理機關或擁有者:國立臺灣大學出版中心
- 取得授權資訊:聯絡處室:國立臺灣大學出版中心
姓名:李協芳
電話:(02)33669326